
Bachelor Computer Science

CLIsis: An Interface for Visu-
ally Impaired Users of Apache
Isis Applications
Sander Ginn

June 8, 2016

Supervisor(s): Maarten Marx (UvA), Dan Haywood (Apache)

I
n
f
o
r
m
a
t
i
c
a
—

U
n
i
v
e
r
s
i
t
e
i
t
v
a
n
A
m
s
t
e
r
d
a
m

2

Abstract

The vast majority of modern user interfaces are graphical user interfaces. This is problematic
for users who are visually impaired, as screen reading technology does at best a mediocre job
at making graphical user interfaces accessible to these users. This thesis proposes a content
unaware user interface for applications developed with Apache Isis that represents information
through audio feedback. We took a three-stage approach to perform the adaptation, ensuring
that the new user interface o↵ers identical functionality as the graphical user interface. In order
to evaluate how user performance is a↵ected when using the new user interface, the GOMS
method was used to analyse tasks in both user interfaces. We then performed a series of tests
with test subjects and compared the results to the GOMS analysis. We conclude that it is
possible to adapt a graphical user interface so that visually impaired users can interact with the
application. Furthermore, we pose several suggestions to improve the results.

2

Contents

1 Introduction 4
1.1 Research questions . 6
1.2 Overview of thesis . 6

2 Theoretical background 8
2.1 Apache Isis . 9

2.1.1 Domain-driven development . 10
2.1.2 Naked Objects pattern . 10
2.1.3 Java Framework . 11

2.2 Previous work . 11
2.3 Pitfalls in user interface adaptation . 12

3 Methods 13
3.1 User interface adaptation . 15

3.1.1 Detection . 15
3.1.2 Representation . 16
3.1.3 Transformation . 18

3.2 Experiments . 18
3.2.1 GOMS . 18
3.2.2 Time trial . 19

4 Implementation 20
4.1 Frameworks and tools . 21

4.1.1 REST API . 21
4.1.2 AngularJS . 21
4.1.3 Web Speech API . 22

4.2 Functionality . 22
4.2.1 Main module . 22
4.2.2 Services . 23
4.2.3 Controllers . 24

5 Evaluation 26
5.1 Specification requirements . 27
5.2 Experiments . 27

5.2.1 GOMS . 28
5.2.2 Time trial . 32
5.2.3 Performance di↵erence . 34

6 Conclusion 36
6.1 Future work . 38
6.2 Acknowledgements . 38

A Application manual 48

B GOMS models 50

3

4

CHAPTER 1

Introduction

Every application that o↵ers a method of interaction with a human being requires some form
of user interface to enable this interaction. But what exactly characterises a user interface?
Galitz[25] provides the following definition for ’user interface’:

The user interface is the part of a computer and its software that people can see, hear,
touch, talk to, or otherwise understand or direct.

Thus, in the context of an application, a user interface is a means of interaction between the
user and system based on mutually understood communication methods. These communication
methods can range from visual methods such as computer displays to audible methods like
speakers. This is still a very abstract definition of what a user interface does. It does not
specify how system information is presented, how the user provides input, what permissions and
restrictions the interface must adhere to, et cetera.

Furthermore, the posed definition of the user interface does not cover the evolution it has
undergone throughout history. Nielsen[43] describes this evolution while providing some practical
examples. In his book, he states that when the computer was in its infancy, several primitive
user interfaces were developed. As the use of computers became more widespread, however, the
line-oriented interface was adopted as a method of interaction. It was named line-oriented as
its characteristic that the user interacted with a system on a single line; once submitted, the
command could not be modified anymore. As long as the presented information is well structured
this method of interaction still has valid use cases in present times, as it e↵ectively delimits
functionality and thus prevents novice users from running into issues. Assistive technology for
visually impaired users excelled with line-oriented interfaces: as all content was character based,
it could easily be made interpretable for someone who lacks (good) vision, for example through
audio[46].

The successor of line-oriented interfaces is the full-screen interface. This interface aims to
exploit a greater deal of the screen real estate by enabling the user to interact with more ele-
ments than just one input line. The full-screen interface also introduced the concept of menus,
where functionality available to the user is listed in a hierarchical structure. Menu design has
been researched extensively to determine the optimal balance of depth and breadth[44, 35, 23].
Depth decreases complexity of menus while increasing ease of navigation; the contrary applies to
breadth. However, menu-based interfaces also marked the beginning of a decrease in accessibility
for visually impaired users, as the information displayed gradually became catered towards a vi-
sual mental model. Visually impaired users tend to mentally model information di↵erently, thus
directly translating a visual interface to a non-visual representation can be extremely di�cult to
comprehend for the target audience[20].

Finally, the user interface type which is currently the most widespread, is the graphical user
interface (GUI). The vast majority of modern applications o↵er a graphical user interface as
their primary method of interaction. A key characteristic of GUIs is that interaction is o↵ered
through direct manipulation. Rather than issuing a command which exactly specifies those
parameters of what has to happen, the user gets continuous feedback of their input commands.
The obvious advantage of a GUI is that it can take advantage of the human sight to represent
data in a more intuitive way. Research has shown that when the interface adheres to some
fundamental principles, a user’s cognitive performance increases with a GUI. An example of one
of these principles is Miller’s Law, proposed in his seminal research on information processing[39].
However, Nielsen also addresses the issue that motivates this research: a GUI sidelines the

5

visually impaired from using an application.
Enabling the visually impaired to use applications despite a lack of or very bad vision has

been an ongoing e↵ort since GUIs were widely accepted as the de facto standard[16]. However,
it has proven to be di�cult to design a GUI that is also accessible without visual cues. A
problematic matter with this is that standardisation has proven to be ine↵ective: even though
the United States has passed laws that enforce accessibility of websites[10] and the World Wide
Web Consortium has developed the Web Content Accessibility Guidelines[13], research has shown
that these guidelines are often ignored and thus websites are rendered inaccessible for accessibility
tools such as screen readers[38].

Visually impaired computer users often make use of a screen reader to translate visual objects
into a representation that can be interpreted by assistive technology, such as braille terminals or
text-to-speech. However, Lazar et al. found that four out of five leading causes of frustration for
blind users using screen readers were related to poor design choices of the software or website
developer[36].

As a solution to these problems, we will implement a bespoke interface that does not require
the use of a third party screen reader. This research aims to provide an alternative interface for
visually impaired users for applications developed with the Apache Isis[2] framework. This user
interface will not serve as a replacement for the existing user interface nor blend in with it. The
user interface is derived from the metamodel of the framework, and is thus content unaware.
This means that the user interface is readily available for any Apache Isis application and no
alterations are necessary to add it to an existing application, preventing the developer from
having to spend a lot of time refactoring existing code. We have named the new user interface
CLIsis: a portmanteau of CLI and Isis, referring to the CLI-like input style that characterises it.

1.1 Research questions

The central research question of this thesis is:

Can a content unaware graphical user interface be adapted to a
non-visual interface so that visually impaired users are able to
interact with the application?

(1)

For the non-visual interface to be useful it is imperative that it o↵ers the same functionality as
the graphical user interface. Therefore, we will also answer the following subquestion:

When implementing a non-visual interface, can the integrity of
the domain model be maintained while providing an e↵ective and
simple method of interaction?

(2)

Finally, it is desired that the non-visual interface does not severely impact user performance, as
this would imply that it is not a legitimate alternative to the existing interface. Thus, a second
subquestion will be answered:

Compared to the standard interface, how is performance a↵ected
when the user employs the new interface?

(3)

1.2 Overview of thesis

To provide a theoretical background, chapter 2 will describe the philosophy of Apache Isis, various
e↵orts in improving accessiblity for visually impaired users, and issues that arise when a user
interface is adapted. Chapter 3 then outlines what methods are used to perform the adaptation
and evaluation of the new user interface. The implementation is explained in chapter 4. Chapter 5

6

assesses the final product and presents the results of the experiments. Finally, chapter 6 answers
the research questions based on the findings in chapter 5.

7

8

CHAPTER 2

Theoretical background

User interface design is a thoroughly studied discipline with strong roots in psychology. In the
1980s GUI development exploded due to better hardware[41]. This meant that traditional user
interfaces had to be redesigned to accommodate to the graphical features of the modern computer.
Chapter 1 described the issues visually impaired users experienced with this new method of
interaction. Section 2.1 will describe what Apache Isis entails. Furthermore, section 2.2 expands
on existing e↵orts to improve usability for the visually impaired. Finally, section 2.3 briefly
addresses some pitfalls when a user interface is adapted to a new form.

2.1 Apache Isis

Picking a framework for developing web applications can be a tedious process. There are dozens
of frameworks for Java alone, with the oldest and most adopted one being Spring[11]. The
vast majority of these frameworks are based on the model-view-controller (MVC) pattern, where
the view displays information to the user, the controller processes interaction between the user
and the view, and the model contains the information and business logic that manipulates this
information[37]. The relations between the components are depicted in figure 2.1.

Controller

View Model

update update
user action

get changed state

notify

Figure 2.1: Interaction between the components of an MVC application

While the MVC pattern itself has a lot of advantages, it has received criticism in the context
of web development. The concept of separating business logic from presentation logic is often
not adhered to in web applications, resulting in controllers that are contaminated with logic that
should live in the model[7]. Trygve Reenskaug, who introduced the MVC pattern while working
at the Xerox Palo Alto Research Center in 1978, concluded that true MVC-based applications
were hard to achieve[47]:

”The conventional wisdom in the group was that objects should be visible and tan-
gible, thus bridging the gap between the human brain and the abstract data within
the computer. This simple and powerful idea failed ... because users were used to
seeing objects from di↵erent perspectives. The visible and tangible object would get
very complex if it should be able to show itself and be manipulated in many di↵erent
ways.”

9

2.1.1 Domain-driven development

Even though Reenskaug did not consider the MVC pattern to be successful, the philosophy of
displaying information in a manner that feels natural to humans is still a very valid one. Many
methodologies have been developed in an attempt to capture this philosophy, of which domain-
driven design (DDD) is a well-known example. Conceived by Eric Evans in 2004, DDD strives
to streamline and align the domain experts (the business experts) and the technical experts (the
developers). Through the process of clearly defining which terms to use for specific concepts
and ensuring that both parties understand what they mean, a ubiquitous language is formed,
and information asymmetry can be avoided[22]. The domain model is then built solely with
terms in the ubiquitous language. The key to success in DDD is then to apply model-driven
development; by developing the software while strictly adhering to the specified domain model,
all stakeholders are able to comprehend the content of the software. If the domain model proves
to be insu�cient to implement a new feature, the stakeholders should work together to extend
the ubiquitous language in order for the domain model to become complete again. This creates
a bidirectional relationship between the domain model and the code: when the domain model
changes, so does the code and vice versa.

2.1.2 Naked Objects pattern

One of the frustrations often expressed regarding DDD is that while the ubiquitous language
combined with the derived domain model may very well tackle the problem of goal diversion, it
also increases overhead greatly. Consider figure 2.2, in which the domain model is represented
in the business logic layer. As the domain model is refined over the course of time, any changes
to the domain model must be reflected in the code. This means that any modifications to the
domain model will have to be applied to the other layers, too.

Presentation layer

Business logic layer

Persistence layer

Database

Figure 2.2: The main application layers in DDD

To address this issue, Richard Pawson designed the Naked Objects (NO) pattern, based on
three core concepts[45]:

1. Business logic should only reside in domain objects1

2. The user interface is an exact representation of the domain objects, and thus is an object-
oriented user interface

3. The user interface is derived completely and fully automatically from the domain objects
through reflection2

These three concepts combined provide a means of developing software that robustly fol-
lows the philosophy of DDD. The first two concepts ensure that the software implements the
domain model and prevents the use of technical language. The application, whether prototypal

1
A domain object is an entity that holds relevant data, in order to transfer the data between the application

layers.

2
Reflection is a language’s ability to inspect and dynamically call classes, methods, attributes, etc. at runtime.

10

@DomainObject

public class SimpleObject implements Comparable<SimpleObject> {

public TranslatableString title() {

return TranslatableString.tr("Object: {name}", "name", getName());

}

@javax.jdo.annotations.Column(allowsNull="false")

@Property

@Getter @Setter

private String name;

public TranslatableString validateName(final String name) {

return name != null && name.contains("!") ?

TranslatableString.tr("Exclamation mark is not allowed"): null;

}

}

Figure 2.3: A very simple example of how the user interface is derived from code

or deployed, will feel familiar to the stakeholders and developers alike. The third concept is not
necessarily related to DDD, but does take away the burden of developing the presentation layer,
thus placing the focus on the business logic (i.e. the domain model). Due to these characteristics,
Reenskaug states in the foreword of Pawson’s thesis that the NO pattern could be seen as an
important extension and implementation of the original MVC pattern.

2.1.3 Java Framework

Apache Isis is a framework written in Java that implements the NO pattern. The core strength
of the framework is that behaviour, which would normally be defined in controllers in classical
MVC applications, is automatically generated by reflection. A major benefit of this feature is that
prototyping is greatly simplified; the business logic is virtually all that needs to be programmed,
and the framework does the rest. This means that project managers, product owners, and other
parties involved can be presented with working prototypes rather than charts and specifications.
It furthermore relieves developers from wasting precious time on coding the visible part of an
application - code which often has limited reusability in a later stage of development.

This does not, however, imply that Apache Isis is merely useful for prototyping. The au-
tomatically generated interface is perfectly suitable for a lot of business-oriented applications.
Estatio[6], an estate management application built on Apache Isis which is commissioned by
a listed real estate investment firm, makes use of the standard wicket viewer. In case a given
application demands a bespoke user interface, it can be designed to use the REST API which
ships with Apache Isis and which will be used to implement our interface.

Due to the underlying NO paradigm that the user interface is derived from the domain
objects, Apache Isis is exceptionally suitable for this research project. All of the information
that dictates what is visible to the user can be found in the code that describes the functionality
of the software. Thus, we are able to develop a new user interface that retrieves everything it
needs from what the developers have written, regardless of the interface they intend to use.

2.2 Previous work

User interfaces make use of at least one of the traditional human senses to convey information,
be it vision, hearing or another sense. It is evident that GUIs are mainly based on exploiting
human vision. As visually impaired people lack this sense, they have to interact with software
through what remains: the auditory, somatic, gustatory, and olfactory senses. The latter two
senses are relatively unexplored in terms of human-computer interaction. While there have
been developments such as ’smicons’, representing icons through odour[30], and a display that
represents rudimentary information through scents sprayed in the direction of the nose[50], it has
proven di�cult to employ these senses in a practical manner. The main reason is that smell and
taste are chemical rather than physical sensations and thus a lot harder to synthesise, let alone
synthesise accurately[34]. Therefore, e↵ectively only two senses remain available: the auditory
and somatic senses.

11

Exploiting the hearing sense is a good way of making software usable for a larger audience,
as it only requires a form of audio output to function and virtually all modern devices either
have built-in speakers or a headphone jack. Most auditory user interfaces synthesise text to
speech and use auditory icons for basic operations, such as the sound of crumpling paper on a
delete operation[42]. While this is regarded as one of the easiest ways of increasing accessibility
of software, it still leaves a portion of the auditory sense unused, as it does not take advantage
of spatial sound. Research has shown that basic elements of interfaces, such as menus, can be
displayed very e↵ectively in a spatial setting[24].

Software can also interact with the somatic sense through haptic feedback. Tactile feedback is
a form of haptic feedback that relies on the sensation of touch, vibration, and pressure. Visually
impaired people who have learned braille can take advantage of output devices called braille
terminals combined with screen reader software, which translates text on the screen to braille.
This does not, however, o↵er practical support for graphical elements. With the advent of mobile
technology, research in the field of tactile user interfaces has increased. The majority of these
mobile devices have touch screens and vibrating motors, allowing gesture-based input and haptic
feedback[29, 51].

2.3 Pitfalls in user interface adaptation

The concept of universally accessible user interfaces has gained a lot of traction since the
widespread adoption of GUIs. It has proven di�cult, however, to adapt an interface in such
a way that it becomes both universally accessible and maintainable. The foremost shortcoming
of adapting an existing user interface is that it is mainly an a posteriori change, thus any fu-
ture changes to the software will require modifications to all existing user interfaces. Another
issue is that it may be very di�cult or even impossible to adapt certain functionality due to
the constraints of the new interface[21]. Furthermore, a lack of standardisation can increase the
required amount of labour to an extent that it is no longer feasible to perform the adaptation[40].
Currently, it is generally accepted that it is more convenient and successful to take a proactive
approach of making design choices with universal accessibility in mind, as opposed to a reactive
approach of adapting an existing design[48]. However, considering this is not within the scope
of this research, we will not address this in detail.

12

13

14

CHAPTER 3

Methods

We have selected several methods for implementing the new interface. First, section 3.1 will
describe the method applied to the existing interface in order to form a theoretical basis for the
implementation. Section 3.2 then outlines what experiment methods are used to evaluate the
interface.

3.1 User interface adaptation

Adapting an existing user interface to a new version has been described extensively[18, 19, 33],
but virtually all research that concretely describes the source and target user interface type
aims at implementing a ’next generation’ user interface, e.g. from text-based to graphical. Our
goal, however, could be interpreted as moving back one generation, as we will remove any visual
aspects from the existing interface. Therefore, we have opted to apply a more abstract method
of adapting a user interface.

In Issues in User Interface Migration, Moore describes migration as ”the activity of moving
software away from its original environment, including hardware platform, operating environment
or implementation language to a new environment”[40]. Although not all of these characteristics
apply to our situation, the article proposes a method for systematic user interface migration that
fits our purpose. The migration process is partitioned in three stages which are each described
in subsections 3.1.1, 3.1.2 and 3.1.3.

3.1.1 Detection

The first stage of the migration process is the detection stage. The goal of this stage is to identify
user interface functionality in the existing code through analysis. Moore lists several techniques
that can be applied to perform the analysis:

1. Pattern matching of an abstract syntax tree that is created by parsing source code

2. Syntactic/semantic analysis of the source code against predefined keywords that identify
user interaction

3. Manual detection of the source code

The article rightfully stresses issues that might arise when utilising technique 3, such as the
likelihood of introducing errors and an insurmountable amount of time necessary to perform the
detection. This certainly holds true in situations where a content specific user interface is going
to be migrated, and (partially) automated techniques such as 1 and 2 will prevent these issues to
a great extent. Our research question, however, is focused on adapting a content unaware user
interface and thus analysing the user interface of a specific application developed with Apache
Isis is pointless, as there is no reassurance that any functionality found in this application is
relevant to other applications. This invalidates techniques 1 and 2 in our research scope.

Fortunately, due to the property of Apache Isis that the user interface is automatically gen-
erated through reflection, functionality in the user interface can be described in a more abstract
form. This reduces the size of the user interface ontology to such an extent that manual detection
can be deemed a feasible technique for the detection stage. Furthermore, all relevant features

15

Figure 3.1: UML representation of the abstract user interface ontology

are well-documented[3] and thus it can be verified that the detection results are complete and
correct.

We performed manual detection on the framework which resulted in the following function-
ality to be exposed:

• Menus
A user can access menus in the interface. Menus are available at any point in the interface.

• Actions
A user can invoke menu and object actions.

• Action prompts
If an action requires parameters, a user can enter the parameters in an action prompt.

• Objects
A user can access objects and their properties.

• Parented collections
A user can access collections that display objects related to a single object.

• Standalone collections
A user can access collections that display objects, e.g. when an invoked action returns
multiple objects.

These six elements together comprise the entire abstract user interface ontology. Figure 3.1
illustrates the relationships between the individual elements.

With the detection stage complete, we move on to the second stage.

3.1.2 Representation

The second stage of the migration process is the representation stage. The objective of this stage
is to describe and document the functionality that we uncovered in the detection stage. It must
be described in such a way that it is not dependent on the target platform or technology while
still adequately representing all requirements of the user interface.

We have drafted a set of specifications which represent the functionality which our new
interface must implement. This stage is particularly relevant to answering research question 2,
as it allows us to judge whether or not the domain model is still intact; successfully implementing
all specifications implies that the integrity of the domain model is maintained.

16

Specification S1

Description Menus can be accessed at all
times

Rationale Classes annotated with @Domain

Service are menus in the GUI.
In the new interface menu selec-
tion will be the first user inter-
action and menus are available
at any point in the interface.

Specification S2

Description Objects can be accessed

Rationale Classes annotated with @Domain

Object are objects in the GUI.
Any object that is available in
the GUI must be accessible in
the new interface.

Specification S2-A

Description Object properties can be ac-
cessed

Rationale Object variables annotated
with @Property are properties
of this object, such as names
or dates. In the new interface,
primitive properties must be
visible and object properties
must be accessible.

Specification S3

Description Collections can be accessed

Rationale Variables annotated with @Col

lection are collections in the
GUI. Collections should be dis-
played correctly depending on if
they are parented or standalone
(see figure 3.1) and all objects
must be accessible.

Specification S4

Description Actions can be invoked

Rationale Functions annotated with @Ac

tion are operations on a certain
entity in the application, such
as executing a search query.
Any action that is available in
the GUI must be available in
the new interface.

Specification S4-A

Description Action parameters can be ac-
cessed

Rationale Actions may have parameters
necessary to execute them.
These parameters must be
accessible.

Specification S5

Description A help menu can be accessed at
all times

Rationale Users must be able to get
context-specific help at any
point in the interface.

Specification S6

Description The application can be termi-
nated

Rationale The user must be able to log out
and exit the application.

Specification S7

Description The application provides error
handling

Rationale The framework o↵ers a lot of
error feedback, such as invali-
dation messages after incorrect
parameters. The new interface
must provide a method of han-
dling errors.

17

3.1.3 Transformation

The third and final step in the migration process is the transformation step. We found ourselves
in a similar situation as in the representation step; Moore describes a number of (partially)
automated techniques to perform the transformation, often relying on generating code based
on mappings between a specific type of representation such as XML and the detection stage
results. Again, this is tailored towards content-aware user interfaces, and thus we will simply
use a manual transformation as our user ontology is concise enough to do so.

The actual transformation stage is described in detail in chapter 4.

3.2 Experiments

To answer research question 3 and subsequently research question 1, we will conduct a series
of experiments to evaluate how user performance di↵ers from the standard user interface when
the new user interface is used. First, a theoretical approach is taken by applying the GOMS
method, which we will describe in section 3.2.1. Some limitations apply to this method, however.
To compensate for these limitations we will run time trials with a set of test subjects to obtain
empirical results, as explained in section 3.2.2. The results of these experiments are covered in
chapter 5.

3.2.1 GOMS

The Goals, Operators, Methods and Selection rules (GOMS) method is a well-established method
to model e�ciency-related design issues and is often applied in early stages of user interface design
evaluation[49, 28, 31]. It is a qualitative method that aims to predict user execution time of a
goal-oriented task. There are four individual components:

• The goal is what is expected of the user to accomplish in the task

• The operators are physical and cognitive processes that are required to complete the task

• The methods are series of operators that the user can execute to reach the goal

• When there are multiple methods to achieve the same goal, the selection rules will decide
which method is picked

Physical operators are processes such as moving the mouse to a target destination or pressing
a key, whereas processes like deciding between two options and remembering previous information
are examples of cognitive operators. For more accurate results, it is recommended to determine
the operator time coe�cients empirically in a controlled environment which resembles the context
of the GOMS analysis[26]. We are unable to do so within the time frame of this research and
thus will apply the coe�cients posed by the inventors of the method, which have been adopted
more universally[32]:

• K - keystroke: .28 seconds for an average nonsecretarial typists

• Tn - sequence of n characters: n ⇥ K seconds

• P - point with mouse to target: 1.1 seconds

• B - press mouse button: .2 seconds

• H - home hands to keyboard or mouse: .4 seconds

• M - mental act of routine thinking or perception: 1.2 seconds

• L - listen to spoken words: .4 seconds per syllable

18

Research has shown that typing accuracy of visually impaired users is not significantly dif-
ferent from sighted users[27], and thus we will use the average speed for keystrokes.

The advantages of GOMS analysis are that it is a fast and cheap way of obtaining results. It
does, however, have several limitations that must be kept in mind[49]. First, the model applies
to expert users and execution times are thus based on users who are familiar with the system;
novice users will usually perform worse than the projected time. Second, it does not account for
errors which in reality will occur. Third, it can only apply to serial execution of tasks, excluding
parallel tasks from the analysis. Fourth, it does not (accurately) take user waiting time during
system processing in consideration. Finally, it does not take user fatigue in account which will
increase during extended usage.

3.2.2 Time trial

To attain empirical results regarding user performance in the new interface, we will compose 5 test
scenarios that will be executed by a small number of test subjects. The scenarios are small tasks
related to Incode’s Contact app[5]. All scenarios will be executed in both user interfaces, where
we will avoid bias by providing them out of order and alternating between the user interfaces[17].
All user interaction will be captured to enable analysis of every step that is required to fulfil the
tasks.

To log the user interaction in the standard interface, we will use an adapted form of Apache
Isis’ PublisherServiceLogging class. This is a built-in module to publish events such as action
invocations or property changes to a logfile. A small adaptation was made to include logging of
events such as the loading of objects or typing in a parameter field.

Since the new user interface will only have one input field that is permanently in focus, all
user interaction will be confirmed with pressing the enter key. This allows us to print the input
text with a timestamp, logging all user interaction.

For each step, we can then take the mean of time it took for each participant to get to the
next step, up until completion of the task. By plotting a timeline for both user interfaces and
their respective means, we will be able to visualise the performance di↵erence between the user
interfaces in a clear manner.

19

20

CHAPTER 4

Implementation

This chapter will provide insight on how the new user interface is implemented. First, a descrip-
tion of the frameworks and tools used is given in section 4.1. Then, section 4.2 will give a brief
description of the core components that drive the new user interface.

4.1 Frameworks and tools

The new user interface will be browser-based and is built with several modern frameworks and
tools. Due to the highly adoptable characteristic of speech feedback, we have opted to use the
Web Speech API, a W3C specification that is currently in development. At the time of writing,
Google’s Chrome browser o↵ers the best support for this feature, and thus our new user interface
requires the use of Chrome. More details on the Web Speech API are provided in section 4.1.3.

4.1.1 REST API

One of Apache Isis’ core features is the availability of a representational state transfer (REST)
API. A REST API provides a simple way of opening up an application to third party software or
implementations. Unlike SOAP which uses remote objects, action invocations and encapsulated
functionality, REST only exposes data structures and their current state[15]. It utilises HTTP
to transfer its data and represents its data in JSON format, making it highly compatible with
other technologies.

Richard Pawson, who conceived the NO pattern as described in section 2.1.2, and Dan Hay-
wood, lead committer of Apache Isis, have drafted the Restful Objects specification. This is an
extension of the REST specification with a set of rules to describe a domain model implementing
the NO pattern[9]. Apache Isis implements the Restful Objects specification.

The REST API allows us to easily connect our user interface to the existing back-end of
any application. Once the user is authorised, only those services and objects that would be
visible to the user in the standard user interface are exposed in the REST API. Furthermore, the
standardised technologies used in the API enables the use of a wide range of web frameworks,
and thus we can pick one that caters best towards achieving the e↵ective and simple interaction
part of research question 2.

4.1.2 AngularJS

One of the main areas of concern in our new user interface is that the target user group should
not have to worry about anything that can impede the use of the application. Therefore, we
have opted for AngularJS[1] as the framework to develop the new user interface in. AngularJS
greatly simplifies the development of single-page applications, which is a valuable asset for our
user interface. All user input is provided through one input field, and it is desirable that the
user is unable to accidentally bring the input field out of focus. With a single-page application,
the browser will never refresh, providing an uninterrupted user experience.

Furthermore, AngularJS has built-in support for consuming a REST API through its
$resource factory, reducing the complexity of the code needed to interact with the back-end of
the application.

AngularJS distinguishes three main components:

21

• The scope acts as the model in the framework, containing the data that is relevant to a
certain state of the application.

• The controller processes user input and updates the scope with new values.

• The view is a dynamic representation of the scope data. If the controller updates the
scope, the view will automatically represent the changes.

4.1.3 Web Speech API

The Web Speech API is an interorganisational e↵ort to make the internet more accessible through
recognition and synthesis of speech[14]. While it is currently still in development, Google Chrome
o↵ers full support of the specified functionality. After some initial experiments, we have concluded
that the API’s speech synthesis works remarkably well and is easy to use. Moreover, it works
with JavaScript out-of-the-box and thus is easily integrable with the AngularJS application.

Aside from the speech synthesis functionality, the Web Speech API also o↵ers speech recog-
nition. Brief testing found that while the speech recognition functionality performed far better
than expected, there were some issues to overcome when synthesis and recognition were com-
bined which would be too time consuming to solve within the time frame of this research. If
development continues after completion of this research it will definitely be implemented at some
point, but for now we will adhere to keyboard input.

4.2 Functionality

This section will describe the AngularJS components that have been implemented. We will not
cover the views, as they are simple HTML files that do not contain any significant functionality. A
live demo is available at http://clisis.ginn.it/; clicking CLIsis will open the new user inter-
face, whereas the Wicket viewer will open the GUI. The credentials are username admin and pass-
word pass. The demo will be online until this project is graded. The source code is available at
GitHub[8], with files relevant to the project located in backend/webapp/src/main/webapp/cli/.
If any issues with the demo arise, please contact sander@ginn.it or refer to appendix A for local
installation instructions.

4.2.1 Main module

The main module app.js is the core of the application. Its main task is to implement the
routing between the di↵erent states in the application. We have used the UI-router addon[12],
as it provides a lot of additional functionality over the default routing provided by AngularJS’s
$routeProvider.

At any time, the application has two active views, as shown in figure 4.1: the user input view
and system output view. This is achieved by adding an abstract state base. While an abstract
state can not be active itself, child states inherit all features that are assigned to the abstract
state. In our case, base only defines the parent view, which divides the screen in two separate
views. The user input view never changes, while the system output view is updated conforming
to user input. The following states are defined:

• base.noOutput displays a welcome screen.

• base.home displays the available menus.

• base.services displays the actions of a menu.

• base.serviceAction processes a menu action invocation. As this is an internal process,
it has no view attached to it.

• base.serviceActionParams dispays parameters if a menu action requires them.

• base.object displays the properties, collections and actions of an object.

22

http://clisis.ginn.it/

• base.objectAction processes an object action invocation. As this is an internal process,
it has no view attached to it.

• base.objectActionParams displays parameters if an object action requires them.

• base.collection displays a collection.

• base.login displays the login screen.

• base.error displays the error message when an error is thrown.

• base.help displays the current context and available commands in that context.

Figure 4.1: The start screen of CLIsis

Furthermore, AngularJS supports filtering variables in views. There are three filters defined
in the main module:

• substringAfterChar is used to capture the last part of a string after a certain character.

• splitToLowerCase takes a string, splits it on capitalised characters and then joins it with
spaces in lower case. This is used so that the speech synthesiser correctly pronounces object
keys, which are represented in camel case.

• startFrom calculates an index for pagination in displaying a collection.

4.2.2 Services

Services are processes that are not visible to the user, but serve as a method of sharing code
across the application. In most cases their task is related to communication between the front-
and back-end of the application.

• authentication.js is used to control the authentication process when logging in. The
majority of the code was taken from Incode’s Contact app[5], with slight alterations where
necessary.

• services.js o↵ers a function getServices() to retrieve the available menus from the REST
API.

• actions.js contains several functions: getActions() retrieves all actions for an object or
menu, invokeAction() invokes a specific menu action, invokeObjectAction() invokes a
specific object action and getActionParams() is a helper function to determine whether
the state should be routed to the parameter state or the invocation state.

• objects.js has a function getObject() to retrieve a specific object, getCollection() to
get a collection of objects, and two helper functions getObjectType() and getObjectId(),
which are used to parse an URL retrieved from the REST API to determine the object
type and id. The function buildObjectHref is used to build the URL that is used in the
AngularJS application.

23

• speechService.js is the service that reads out the user input and system output. It has
a method speak() and cancelSpeech(), which are self-explanatory.

• Then there are two convenience services: errorService.js takes care of throwing errors,
and rootScopeSanitiser.js makes sure that the $rootScope1 is not polluted with stale
variables.

4.2.3 Controllers

Each state of the application has its own controller. The controller ensures that the corresponding
view is updated with new information. Aside from their individual behaviour described below,
they all make use of AngularJS’s $scope.$watch functionality, which ’watches’ the data in the
$scope for changes. When a change occurs, it triggers the speak() function so the user gets
spoken feedback.

• InputController.js is the core controller of our user interface. It is always active and
processes the user input that is provided through the input field. Aside from some helper
functions that ensure that the focus of the browser is always on the input field and the user
can not accidentally tab to the URL bar, the majority of its functionality resides in the
function evaluateInput(). This function retrieves the input from the input field, splits it
on spaces and then feeds the first element to a switch. The switch recognises 13 di↵erent
commands. On commands that require one or more parameters, the switch also validates
whether they are present and correct.

– menus directs the application to the base.home state.

– menu can either take the name of a menu or the index it is displayed with as the
parameter. It then directs to the base.services state.

– actions broadcasts a $showActions event. If a menu or object is currently in scope,
it shows its actions and they are spoken out.

– action can take either the name of an action or the index it is displayed with as the
parameter. It then determines whether the action to be invoked has parameters or not;
if it does, it directs to the base.objectActionParams or base.serviceActionParams
state. If it does not have parameters, it directs to the base.objectAction or
base.serviceAction state.

– field takes an integer as a parameter to denote which parameter field is to be filled
out with the content of the second parameter.

– submit confirms that the user has filled out all parameter fields and invokes the action.

– get can be used to get an object’s property or collection, or an object from a collection.
If the parameter is an integer, it directs the application to the desired state. If get
is used on a collection, the parameter can also be a string. The controller then filters
the contents of the collection with the input, and directs to the base.object state
if there is only one result, or to a new base.collection if there are multiple results
that fit the parameter.

– show without a parameter displays the first five results of a collection. The parameters
next and previous turn the pages, with wraparound on the first and last pages.

– properties broadcasts a $showProperties event. If an object is currently in scope,
it shows its actions and they are spoken out.

– collections broadcasts a $showCollections event. If an object is currently in scope,
it shows its collections and their sizes, and they are spoken out.

– back goes back to the previous state. The controller keeps track of a previousStates
stack, popping the top state when it goes back.

– help lists the help menu.

1
The $rootScope is a global scope accessible by all active controllers. We use it to transfer certain data between

controllers.

24

– quit logs the user out of the application and redirects to the login screen.

• HomeController.js gets the menus from the services service and then filters the results
based on if there are actions available on each menu. If there are no actions available it is
a system menu and bears no functionality for the user.

• ServiceController.js gets the menu actions from the actions service.

• ObjectController.js gets the object details from the objects service and then parses the
results. For all collections that belong to the object, it gets the contents of the collection
to display its size in the object view. It also provides a helper method typeOf() that is
used in the view.

• ActionParamController.js processes the parameters that are required to invoke actions.
Parameters can either be simple fields that require a form of text input, or they can be
options which are predefined by the system. If the latter is the case, the REST API exposes
them in an extra object key choices. The controller builds the HTML text with these
choices. It also listens to a $fieldInputEvent, which contains the user input to update a
parameter field.

• ActionController.js calls either invokeAction() or invokeObjectAction(), depending
on if the action belongs to a menu or an object. If the action returns one object, the
controller routes the application to the object state; if it returns multiple objects, it routes
the application to the collection state.

• CollectionsController.js gets the collection of objects and manages the pagination in the
view. Pagination is essential, as collections can grow large which will cause user frustration
if the speech synthesiser speaks the content of a large collection in one go.

• HelpController.js sets boolean values based on the state in which the help command was
issued, which the view uses to only those commands that are relevant to that state.

• ErrorController.js takes care of displaying the correct error message and LoginCon-
troller.js handles the login process.

25

26

CHAPTER 5

Evaluation

This chapter will introduce the results that have been achieved through the implementation and
experiments. Section 5.1 describes whether all the specifications as defined in 3.1.2 have been
met. Section 5.2 presents the results of the two experiments that have been performed.

5.1 Specification requirements

In section 3.1.2, we drafted a set of specifications to which the new user interface must comply.
These specifications enforce that all required functionality is implemented, and thus we will now
evaluate if all specifications have been met.

Specification ID Requirements met Justification

S1 Yes The menus and menu commands can always be called
S2 Yes The get command allows the user to access an object
S2-A Yes The properties command lists an object’s proper-

ties. If a property is an object, that object can be
accessed.

S3 Yes The get command allows the user to access a collec-
tion. Parented collections can be accessed with the
collections command.

S4 Yes The action command allows the user to invoke an
action.

S4-A Yes If an action has parameters, the user is prompted to
provide them.

S5 Yes The help command opens a help menu with context-
specific commands explained.

S6 Yes The quit command logs the user out.
S7 Yes The errorService manages error handling.

Table 5.1: Evaluation of the specifications

Since all specifications have been succesfully implemented, we can confirm that the integrity
of the domain model has been maintained in our new user interface. Together with our findings
in section 5.2.3 we will use these results to answer research question 2.

5.2 Experiments

This section presents the results of our two experiments. Both experiments were focused on a
set of five scenarios. These scenarios describe short tasks related to Incode’s contact app[5] on
which we have performed GOMS analysis in the context of both user interfaces, as outlined in
section 5.2.1, and in addition the tasks were executed by test subjects in timed experiments. The
results of the timed experiments are shown in section 5.2.2.

The following scenarios have been used in our experiments:

27

Scenario Description

Scenario 1 Create a new Contact with the following details:
- Name: Sander Ginn
- Company: Eurocommercial
- Mobile number: +31 6252 5983
- Email: sander@ginn.it

Scenario 2 - Go to contact ’Clarisse Bentz’
- Add her to the contact group ’Management Board’ with a new role ’Secretary’

Scenario 3 - Find the contact with an email address ending in ’@gmail.com’
- Remove his/her contact number ’mobile’

Scenario 4 - Create new contact group ’Amsterdam’ in country ’Global’
- Add user ’Anne van Hope’ with role ’Technical Manager’

Scenario 5 - Go to contact ’Damien Grandjean’
- Go to his role in contact group ’Amiens Property’
- Change his role to a new type ’Janitor’

Table 5.2: The scenarios as used in the experiments

5.2.1 GOMS

This section presents the results of performing GOMS analyses for each scenario in table 5.2
in both user interfaces. The results are presented in a collated manner grouped by subgoals to
keep them concise. The analyses were performed in Cogulator[4], an open source application for
GOMS modeling. For the full models, refer to appendix B; a description of the method and the
step IDs can be found in 3.2.1.

The mean increase in execution time over all scenarios is about 308%. As outlined in sec-
tion 3.2.1, the results as reported in this section are theoretical and from here on forward will
be referred to as the ’predicted times’. The results of these analyses alone do not hold a lot
of value yet; they will become more relevant once we will compare them to empirical results in
section 5.2.3.

Scenario 1

For scenario 1, the predicted time is 38.46 seconds in the GUI and 92.20 seconds in CLIsis, which
equals to a predicted increase of about 240% in execution time.

Scenario 1 GUI

Step numbers Step IDs Step description Time (seconds)

1-6 MMPMPB Invoke ’Create’ action 6.00s
7-10 MMHT11 Fill out ’Name’ field 5.88s
11-14 MKMT14 Fill out ’Company’ field 6.60s
15-20 MMKKMT13 Fill out ’Mobile number’ field 7.80s
21-26 MMKKMT14 Fill out ’Email’ field 8.08s
27-31 MHMPB Verify input and confirm 4.10s

Total 38.46s

Table 5.3: Predicted execution time of Scenario 1 in the GUI

28

Scenario 1 CLIsis

Step numbers Step IDs Step description Time (seconds)

1-8 MT5KLMT6KL Go to ’Contacts’ menu 15.64s
9-16 MT7KLMT8KL Invoke ’Create’ action 28.76s
17-20 MT19KL Fill out ’Name’ field 8.80s
21-24 MT22KL Fill out ’Company’ field 9.24s
25-28 MT21KL Fill out ’Mobile number’ field 12.96s
29-32 MT22KL Fill out ’Email’ field 11.24s
33-36 MT6KL Submit 5.56s

Total 92.20s

Table 5.4: Predicted execution time of Scenario 1 in CLIsis

Scenario 2

For scenario 2, the predicted time is 38.24 seconds in the GUI and 106.96 seconds in CLIsis,
which equals to a predicted increase of about 280% in execution time.

Scenario 2 GUI

Step numbers Step IDs Step description Time (seconds)

1-6 MMPMPB Invoke ’Find’ action 6.00s
7-10 HMMT14 Fill out ’Query’ field 6.72s
11-15 MHMPB Verify input and confirm 4.10s
16-19 MMPB Invoke ’Add’ action 3.70s
20-26 MPBMMPB Fill out ’Contact Group’ field 6.20s
27-32 MMPBMT9 Fill out ’New Role’ field 7.42s
33-37 MHMPB Verify input and confirm 4.10s

Total 38.24s

Table 5.5: Predicted execution time of Scenario 2 in the GUI

Scenario 2 CLIsis

Step numbers Step IDs Step description Time (seconds)

1-8 MT5KLMT6KL Go to ’Contacts’ menu 15.64s
9-16 MT7KLMT8KL Invoke ’Find’ action 19.56s
17-20 MT22KL Fill out ’Query’ field 9.64s
21-24 MT6KL Submit 5.56s
25-32 MT7KLMT8KL Invoke ’Add contact role’ action 37.56s
33-36 MT9KL Fill out ’Contact Group’ field 5.60s
37-40 MT17KL Fill out ’New Role’ field 7.84s
41-44 MT6KL Submit 5.56s

Total 106.96s

Table 5.6: Predicted execution time of Scenario 2 in CLIsis

Scenario 3

For scenario 3, the predicted time is 23.10 seconds in the GUI and 101.76 seconds in CLIsis,
which equals to a predicted increase of about 441% in execution time.

29

Scenario 3 GUI

Step numbers Step IDs Step description Time (seconds)

1-6 MMPMPB Invoke ’Find by email’ action 6.00s
7-10 HMMT10 Fill out ’Query’ field 5.60s
11-15 MHMPB Verify input and confirm 4.10s
16-19 MMPB Go to ’Mobile’ contact number 3.70s
20-23 MMPB Invoke ’Delete’ action 3.70s

Total 23.10s

Table 5.7: Predicted execution time of Scenario 3 in the GUI

Scenario 3 CLIsis

Step numbers Step IDs Step description Time (seconds)

1-8 MT5KLMT6KL Go to ’Contacts’ menu 15.64s
9-16 MT7KLMT8KL Invoke ’Find by email’ action 19.56s
17-20 MT18KL Fill out ’Query’ field 9.32s
21-24 MT6KL Submit 5.56s
25-32 MT11KLMT5KL Get ’Contact Numbers’ collection 16.24s
33-40 MT4KLMT5KL Get ’Mobile’ contact number 23.08s
41-48 MT7KLMT8KL Invoke ’Delete’ action 12.36s

Total 101.76s

Table 5.8: Predicted execution time of Scenario 3 in CLIsis

Scenario 4

For scenario 4, the predicted time is 45.32 seconds in the GUI and 118.92 seconds in CLIsis,
which equals to a predicted increase of about 262% in execution time.

Scenario 4 GUI

Step numbers Step IDs Step description Time (seconds)

1-4 MMPB Invoke ’Create’ action 3.70s
5-11 MPBMMPB Fill out ’Country’ field 6.20s
12-17 MMPBHT9 Fill out ’Name’ field 6.62s
18-22 MHMPB Verify input and confirm 4.10s
23-26 MMPB Go to ’Amsterdam’ contact group 3.70s
27-30 MMPB Invoke ’Add’ action 3.70s
31-37 MPBMMPB Fill out ’Contact’ field 6.20s
38-44 MPBMMPB Fill out ’Role’ field 6.20s
45-49 MMMPB Verify input and confirm 4.90s

Total 45.32s

Table 5.9: Predicted execution time of Scenario 4 in the GUI

30

Scenario 4 CLIsis

Step numbers Step IDs Step description Time (seconds)

1-8 MT5KLMT6KL Go to ’Contact Groups’ menu 16.04s
9-16 MT7KLMT8KL Invoke ’Create’ action 16.76s
17-20 MT9KL Fill out ’Country’ field 5.60s
21-24 MT17KL Fill out ’Name’ field 7.84s
25-28 MT6KL Submit 5.56s
29-36 MT7KLMT8KL Invoke ’Add contact role’ action 49.56s
37-40 MT9KL Fill out ’Contact’ field 5.60s
41-44 MT9KL Fill out ’Role’ field 5.60s
45-48 MT6KL Submit 6.36s

Total 118.92s

Table 5.10: Predicted execution time of Scenario 4 in CLIsis

Scenario 5

For scenario 5, the predicted time is 39.54 seconds in the GUI and 125.88 seconds in CLIsis,
which equals to a predicted increase of about 318% in execution time.

Scenario 5 GUI

Step numbers Step IDs Step description Time (seconds)

1-6 MMPMPB Invoke ’Find’ action 6.00s
7-10 HMMT16 Fill out ’Query’ field 7.28s
11-15 MHMPB Verify input and confirm 4.10s
16-19 MMPB Go to ’Amiens Property’ contact role 3.70s
20-23 MMPB Invoke ’Edit’ action 3.70s
24-30 MPBMMPB Deselect ’Role’ field 6.20s
31-35 MPBHT7 Fill out ’New Role’ field 4.86s
36-39 MMPB Verify input and confirm 3.70s

Total 39.54s

Table 5.11: Predicted execution time of Scenario 5 in the GUI

Scenario 5 CLIsis

Step numbers Step IDs Step description Time (seconds)

1-8 MT5KLMT6KL Go to ’Contacts’ menu 15.64s
9-16 MT7KLMT8KL Invoke ’Find’ action 19.56s
17-20 MT24KL Fill out ’Query’ field 10.20s
21-24 MT6KL Submit 5.56s
25-32 MT11KLMT5KL Get ’Contact Roles’ collection 16.24s
33-40 MT4KLMT5KL Get ’Amiens Property’ contact role 18.28s
41-48 MT7KLMT8KL Invoke ’Edit’ action 25.96s
49-52 MT15KL Fill out ’New Role’ field 7.28s
53-56 MT6KL Submit 7.16s

Total 125.88s

Table 5.12: Predicted execution time of Scenario 5 in CLIsis

31

5.2.2 Time trial

In our time trial experiments, we formed a sample of four test subjects. They were all members
of the IT department of Eurocommercial Properties and none had any former experience with
an application developed in Apache Isis. Before the experiments started, each subject received
a brief introduction to the new user interface, so they were aware of the basic functionalities
and what they could do if they got stuck. If the test subject asked the experimenter for help,
he was responsive but non-directive. To prevent bias of repetition, the scenarios were executed
nonsequentially and alternating between the user interfaces. Whenever the test subject had
to perform a task in CLIsis, the user turned away the screen so that only audio feedback was
available for navigation. The test subject received a booklet with one scenario per page and was
instructed not to turn the page until informed to do so. The test subjects performed the tasks
in the following order: S2 GUI, S1 CLIsis, S4 GUI, S5 CLIsis, S3 GUI, S2 CLIsis, S1 GUI, S4
CLIsis, S5 GUI, S3 CLIsis.

Figures 5.1, 5.2, 5.3, 5.4 and 5.5 plot timelines for each user interface per scenario. Each step
represents the mean execution time. Some users were quick to learn that they did not need to
list for example all menus before accessing the menu of preference; they would directly go to the
menu of choice by calling the menu command with the name of the menu as a parameter. For
each occurrence of a ’step skip’ like this, a time di↵erence of 0 was used.

The di↵erent colours indicate major steps required to complete the task, with hues running
from light to dark when several minor steps are necessary to complete a major step. The figure
captions describe what major task each color relates to.

Scenario 1

For scenario 1, the measured time is 42.80 seconds in the GUI and 175.87 seconds in CLIsis,
which equals to a measured increase of about 411%.

Figure 5.1: Red shades: invoke action create, green shades: fill out create parameters

Scenario 2

For scenario 2, the measured time is 49.35 seconds in the GUI and 175.16 seconds in CLIsis,
which equals to a measured increase of about 355%.

32

Figure 5.2: Red shades: invoke action find, green shades: fill out create parameters, yellow
shades: invoke action add, blue shades: fill out add parameters

Scenario 3

For scenario 3, the measured time is 31.94 seconds in the GUI and 127.33 seconds in CLIsis,
which equals to a measured increase of about 399%.

Figure 5.3: Red shades: invoke action find by email, green shades: fill out find by email
parameters, yellow shades: go to mobile number, blue shades: invoke action delete

Scenario 4

For scenario 4, the measured time is 40.54 seconds in the GUI and 161.51 seconds in CLIsis,
which equals to a measured increase of about 398%.

33

Figure 5.4: Red shades: invoke action create contact group, green shades: fill out create
parameters, yellow shades: invoke action add role, blue shades: fill out add role parameters

Scenario 5

For scenario 5, the measured time is 38.68 seconds in the GUI and 213.22 seconds in CLIsis,
which equals to a measured increase of about 551%.

Figure 5.5: Red shades: invoke action find, green shades: fill out find parameters, yellow
shades: get contact role, blue shades: invoke action edit, grey shades: fill out edit parameters

5.2.3 Performance di↵erence

With both a theoretical and empirical approach, we can now compare the results to see how
accurate the GOMS analyses were. Table 5.13 shows the di↵erence between the empirical data
and the predicted GOMS data. On average, the empirical measurements were around 15% higher

34

than the predicted times for the GUI, whereas for CLIsis, the average increase in execution
time compared to the predicted time was around 57%. This can be attributed to a number of
reasons, but the most likely reason is the learning curve of the new user interface. As stated
in section 5.2.2, the order in which the test subjects performed the tasks in CLIsis was S1, S5,
S2, S4, S3. If we now look at the di↵erence for CLIsis in that order, we see that the di↵erence
between empirical and predicted data is consistently decreasing: +91%, +69%, +64%, +36%
and +25%. Considering the very limited amount of time the users spent working with CLIsis
yet showing a strong improvement in performance already, it is likely that once a user has more
experience with CLIsis their performance will increase significantly. In addition, it is inevitable
that the test subjects were familiar with some form of GUIs and thus felt more familiar with
the graphical interface. This clarifies the smaller di↵erence between the predicted and empirical
data for the GUI.

The timelines in section 5.2.2 reveal that filling out parameter fields are a major reason for
the strong increase in execution time in CLIsis as compared to the GUI. Upon inspection of some
of these parameters, it becomes clear that the equivalent of a dropdown menu in the GUI causes
a great increase in execution time, as all options in the dropdown menu are exposed in the REST
API as the ’choices’ of a parameter. In the new user interface, the speech synthesiser will name
all of these choices, causing a delay just by the amount of speech alone. This is illustrated in
figure 5.6. There’s also the issue of receiving too much information in one go, requiring users to
reinvoke the action to hear the options again, increasing the delay even more.

That said, nothing obliges the user to let the speech synthesiser finish speaking. Once the user
gets more accustomed with the user interface, the speech function will serve more as a reminder
rather than a requirement. The GOMS analyses all assume completion of every sentence, so
in theory, execution times could fall below predicted times with experienced users. This is
particularly realistic for routine tasks.

Scenario GOMSGUI Time trialGUI Di↵. GOMSCLIsis Time trialCLIsis Di↵.

1 38.46s 42.80s +11% 92.20s 175.87s +91%
2 38.24s 49.35s +29% 106.96s 175.16s +64%
3 23.10s 31.94s +38% 101.76s 127.33s +25%
4 45.32s 40.54s -11% 118.92s 161.51s +36%
5 39.54s 38.68s -2% 125.88s 213.22s +69%

Table 5.13: A comparison of the predicted GOMS and empirical time trial results

Figure 5.6: A comparison between the display of parameters in the GUI and CLIsis

35

36

CHAPTER 6

Conclusion

To conclude this research, we will assess the achieved results in relation to each research question.
Research question 3 can be answered first:

Compared to the standard interface, how is performance a↵ected when the user em-
ploys the new interface?

The empirical results as observed in section 5.2.2 show a significant increase in execution time
of the experiment tasks when compared to the GUI execution time, but section 5.2.3 provides an
analysis that is promising in terms of users becoming accustomed with the new user interface and
therefore improving their execution time. Research has shown that GUIs o↵er little to no per-
formance improvement for expert users[17], which rea�rms the assumption that the target users
will perform better as they grow acquainted with the new user interface. Due to the amount of
speech that is unavoidable with a non-visual interface as proposed in this research, it is inevitable
that an increase in execution time occurs. Moreover, improvements in execution time can still
be achieved through several enhancements which will be laid out in section 6.1. Considering the
conditions and requirements which apply to a non-visual user interface, we therefore consider
the decrease in performance to be within acceptable margins.

Next, research question 2 can be addressed:

When implementing a non-visual interface, can the integrity of the domain model be
maintained while providing an e↵ective and simple method of interaction?

Section 5.1 confirmed that all functionality derived from the detection stage as described in
section 3.1.2 has been implemented successfully. This verifies that the integrity of the domain
model is intact, as all functionality is supported in the new user interface. The first part of
research question 2 can therefore be a�rmed. However, whether or not the new user interface
provides an e↵ective and simple method of interaction is debatable. It is di�cult to determine
what qualifies as ’e↵ective’ and ’simple’, especially without feedback from users who are actually
visually impaired, rather than simulating visual impairment. The answer to research question 3
states that since the measured performance loss is expected and acceptable, we can conclude
that the interaction can be considered e↵ective. Whether it is simple is rather subjective. At
the end of the time trial, the test subjects were all surprised with the improvements they made
over the course of just a few tests, often citing the aha moment they experienced during the
tests. Therefore, we can conclude that it is possible to provide an e↵ective and simple method
of interaction while the integrity of the domain model is maintained.

Finally, research question 1 can be answered:

Can a content unaware graphical user interface be adapted to a non-visual interface
so that visually impaired users are able to interact with the application?

The implementation as proposed in this research is abstracted from specific applications de-
veloped with Apache Isis and is therefore content unaware. The user interface can be deployed
to any Apache Isis application and will work regardless of what functionality is o↵ered by the
application, barring any bespoke addons that are not part of the framework. Furthermore, the
conclusions related to research question 2 and 3 confirm that it is possible to enable visually

37

impaired users to interact with the application.

The findings reported in this paper a�rm that it is possible to adapt a GUI to a non-visual
user interface without compromising functionality. In terms of performance, some compromises
have to be made; however, this is unavoidable when the user lacks the critical sense of eyesight.

6.1 Future work

While the new user interface as proposed in this research met the requirements to be qualified as
successful, there is still a lot of improvement to be gained. The most critical issue that needs to
be addressed is the way dropdown menus are represented in the new user interface, as described
in section 5.2.3. Future research will have to determine how the parameter choices should be
displayed to improve usability. Additionally, tab completion of commands can be implemented
to reduce the amount of typing required. Furthermore, in addition to speech synthesis, the Web
Speech API o↵ers speech recognition as well. Implementing this feature in the new user interface
would abolish the need for typing altogether and could, depending on the accuracy of the speech
recognition, improve performance significantly when the user makes a lot of typing mistakes.
Moreover, certain keywords can be replaced with auditory icons, such as the sound of crumpling
paper when a delete action is invoked. This could reduce the amount of speech required for
certain operations.

Other improvements do not improve user performance, but have a positive e↵ect on the
stability of the user interface. A major feature of AngularJS is its strong support for testing,
which can enforce correct behaviour of the user interface. Due to the fact that we had no prior
knowledge of AngularJS and the limited amount of time available in this research, our code
is currently untested. In order for CLIsis to eventually become a mature user interface, it is
imperative that a su�cient amount of test coverage is introduced.

In its current state, the user interface relies upon the $rootScope to transfer data between
application elements. This is not considered as desired behaviour, as there are more elegant
solutions available, such as transferring data through the use of events. An additional advantage
of deprecating the use of $rootScope is that it voids the need of the rootScopeSanitiser
service. This undesired implementation can, again, be attributed to the lack of prior knowledge
of AngularJS.

Finally, a great improvement would be the option to switch between CLIsis and the GUI
while preserving context, as this would allow a visually impaired user to collaborate with or
ask help from other users who do possess the ability to see. In its current state, it will be a
cumbersome task to share information with other users. If a switch between user interfaces can
be made without losing active information, sharing and collaborating will become much easier.

6.2 Acknowledgements

I would like to than Dan for his continuous input throughout the months of this research, Maarten
for the pleasant supervision of my project, Jeroen and Marc for enabling me to undertake this
endeavour within Eurocommercial Properties, the test subjects for their participation, and my
girlfriend Janelle for pushing me to pursue my own project.

38

39

40

Bibliography

[1] Angularjs. https://angularjs.org/. (Accessed on 06/02/2016).

[2] Apache isis. http://isis.apache.org/. (Accessed on 05/16/2016).

[3] Apache isis documentation. http://isis.apache.org/documentation.html. (Accessed on
05/31/2016).

[4] Cogulator: A cognitive calculator. http://cogulator.io/. (Accessed on 06/01/2016).

[5] Contact app. https://github.com/incodehq/contactapp. (Accessed on 06/02/2016).

[6] Estatio. http://www.estatio.org/. (Accessed on 05/18/2016).

[7] Fulfilling the promise of mvc. https://www.infoq.com/articles/Nacked-MVC. (Accessed
on 05/17/2016).

[8] Isis-module-clisis. https://github.com/sanderginn/isis-module-clisis. (Accessed on
06/07/2016).

[9] Restful objects. http://www.restfulobjects.org/. (Accessed on 06/02/2016).

[10] Section 508 of the rehabilitation act. http://www.section508.gov/
section-508-of-the-rehabilitation-act. (Accessed on 05/16/2016).

[11] Spring. https://spring.io/. (Accessed on 05/16/2016).

[12] Ui-router: The de-facto solution to flexible routing with nested views in angularjs. https:
//github.com/angular-ui/ui-router. (Accessed on 06/02/2016).

[13] Web content accessibility guidelines (wcag) 2.0. https://www.w3.org/TR/WCAG20/. (Ac-
cessed on 05/16/2016).

[14] Web speech api specification. https://dvcs.w3.org/hg/speech-api/raw-file/tip/
speechapi.html. (Accessed on 06/02/2016).

[15] Battle, R. and Benson, E. (2008). Bridging the semantic web and web 2.0 with representa-
tional state transfer (rest). Web Semantics: Science, Services and Agents on the World Wide
Web, 6(1):61–69.

[16] Boyd, L. H. et al. (1990). The graphical user interface crisis: Danger and opportunity.

[17] Chen, J.-W. and Zhang, J. (2007). Comparing text-based and graphic user interfaces for
novice and expert users. In AMIA Annual Symposium Proceedings, volume 2007, page 125.
American Medical Informatics Association.

[18] Classen, I., Hennig, K., Mohr, I., and Schulz, M. (1997). Cui to gui migration: Static analysis
of character-based panels. In Software Maintenance and Reengineering, 1997. EUROMICRO
97., First Euromicro Conference on, pages 144–149. IEEE.

[19] Csaba, L. (1997). Experience with user interface reengineering: Transferring dos panels
to windows. In Software Maintenance and Reengineering, 1997. EUROMICRO 97., First
Euromicro Conference on, pages 150–155. IEEE.

[20] Edwards, W. K., Mynatt, E. D., and Stockton, K. (1994). Providing access to graphical
user interfacesnot graphical screens. In Proceedings of the first annual ACM conference on
Assistive technologies, pages 47–54. ACM.

41

https://angularjs.org/
http://isis.apache.org/
http://isis.apache.org/documentation.html
http://cogulator.io/
https://github.com/incodehq/contactapp
http://www.estatio.org/
https://www.infoq.com/articles/Nacked-MVC
https://github.com/sanderginn/isis-module-clisis
http://www.restfulobjects.org/
http://www.section508.gov/section-508-of-the-rehabilitation-act
http://www.section508.gov/section-508-of-the-rehabilitation-act
https://spring.io/
https://github.com/angular-ui/ui-router
https://github.com/angular-ui/ui-router
https://www.w3.org/TR/WCAG20/
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

[21] Emiliani, P. L. and Stephanidis, C. (2000). From adaptations to user interfaces for all. In
6th ERCIM workshop CNR-IROE, Florence, Italy.

[22] Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

[23] Fisher, D. L., Yungkurth, E. J., and Moss, S. M. (1990). Optimal menu hierarchy design:
syntax and semantics. Human Factors: The Journal of the Human Factors and Ergonomics
Society, 32(6):665–683.

[24] Frauenberger, C., Putz, V., and Holdrich, R. (2004). Spatial auditory displays-a study on
the use of virtual audio environments as interfaces for users with visual disabilities. DAFx04
Proceedings, pages 5–8.

[25] Galitz, W. O. (2007). The essential guide to user interface design: an introduction to GUI
design principles and techniques. John Wiley & Sons.

[26] Gong, R. and Kieras, D. (1994). A validation of the goms model methodology in the
development of a specialized, commercial software application. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 351–357. ACM.

[27] Ishida, H. (1993). Accuracy and error patterns in typing of the visually handicapped. Human
Engineering, 29(5):321–327.

[28] John, B. E. and Kieras, D. E. (1996). The goms family of user interface analysis techniques:
Comparison and contrast. ACM Transactions on Computer-Human Interaction (TOCHI),
3(4):320–351.

[29] Kane, S. K., Bigham, J. P., and Wobbrock, J. O. (2008). Slide rule: making mobile touch
screens accessible to blind people using multi-touch interaction techniques. In Proceedings of
the 10th international ACM SIGACCESS conference on Computers and accessibility, pages
73–80. ACM.

[30] Kaye, J. N. (2001). Symbolic olfactory display. PhD thesis, Citeseer.

[31] Kieras, D. (1994). Goms modeling of user interfaces using ngomsl. In Conference companion
on Human factors in computing systems, pages 371–372. ACM.

[32] Kieras, D. (2001). Using the keystroke-level model to estimate execution times. University
of Michigan.

[33] Kong, L. (2000). Legacy interface migration: From generic ascii UIs to task-centered GUIs.
PhD thesis, University of Alberta.

[34] Kortum, P. (2008). HCI beyond the GUI: Design for haptic, speech, olfactory, and other
nontraditional interfaces. Morgan Kaufmann.

[35] Landauer, T. K. and Nachbar, D. (1985). Selection from alphabetic and numeric menu trees
using a touch screen: breadth, depth, and width. ACM SIGCHI Bulletin, 16(4):73–78.

[36] Lazar, J., Allen, A., Kleinman, J., and Malarkey, C. (2007). What frustrates screen reader
users on the web: A study of 100 blind users. International Journal of human-computer
interaction, 22(3):247–269.

[37] Le↵, A. and Rayfield, J. T. (2001). Web-application development using the
model/view/controller design pattern. In Enterprise Distributed Object Computing Confer-
ence, 2001. EDOC’01. Proceedings. Fifth IEEE International, pages 118–127. IEEE.

[38] Leuthold, S., Bargas-Avila, J. A., and Opwis, K. (2008). Beyond web content accessibility
guidelines: Design of enhanced text user interfaces for blind internet users. International
Journal of Human-Computer Studies, 66(4):257–270.

42

[39] Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological review, 63(2):81.

[40] Moore, M. M. and Rugaber, S. (1993). Issues in user interface migration. In Proceedings of
the Third Software Engineering Research Forum.

[41] Myers, B. A. (1998). A brief history of human-computer interaction technology. interactions,
5(2):44–54.

[42] Mynatt, E. D. (1995). Transforming graphical interfaces into auditory interfaces. In Con-
ference companion on Human factors in computing systems, pages 67–68. ACM.

[43] Nielsen, J. (1994). Usability engineering. Elsevier.

[44] Paap, K. R. and Roske-Hofstrand, R. J. (1986). The optimal number of menu options
per panel. Human Factors: The Journal of the Human Factors and Ergonomics Society,
28(4):377–385.

[45] Pawson, R. and Matthews, R. (2002). Naked objects. In Companion of the 17th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
pages 36–37. ACM.

[46] Poll, L. H. D. (1996). Visualising Graphical User Interfaces for Blindusers. Eindhoven
University.

[47] Reenskaug, T. (2007). Programming with roles and classes: The babyuml approach. A
chapter in Computer Software Engineering Research.

[48] Savidis, A. and Stephanidis, C. (2004). Unified user interface design: designing universally
accessible interactions. Interacting with computers, 16(2):243–270.

[49] Schrepp, M. (1990). Goms analysis as a tool to investigate the usability of web units for
disabled users. Universal Access in the Information Society, 9(1):77–86.

[50] Yanagida, Y., Kawato, S., Noma, H., Tomono, A., and Tesutani, N. (2004). Projection
based olfactory display with nose tracking. In Virtual Reality, 2004. Proceedings. IEEE, pages
43–50. IEEE.

[51] Yatani, K. and Truong, K. N. (2009). Semfeel: a user interface with semantic tactile feedback
for mobile touch-screen devices. In Proceedings of the 22nd annual ACM symposium on User
interface software and technology, pages 111–120. ACM.

43

44

45

46

Acronyms

DDD domain-driven design. 10, 11

GOMS Goals, Operators, Methods and Selection rules. 18, 19, 27, 28, 34, 35

GUI graphical user interface. 5, 6, 9, 11, 12, 17, 22, 28–35, 37, 38

MVC model-view-controller. 9–11

NO Naked Objects. 10, 11, 21

REST representational state transfer. 11, 21, 23, 25, 35

47

48

APPENDIX A

Application manual

A.1 Local instance

This section describes how to run the demo application locally.

A.1.1 Prerequisites

The following tools are required:

• Java 8

• Maven 3

• Git

A.1.2 Installation

Follow these steps to run the demo application:

1. Clone the isis-module-clisis repository (https://github.com/sanderginn/isis-module-clisis)

2. In a terminal window, go to the root directory

3. Run mvn clean install -Djetty-console-war

4. After the build successfully completes, run mvn antrun:run -P self-host

5. When the Jetty window opens, press start. The demo data will be installed and the
application will open itself in a new browser window.

49

https://github.com/sanderginn/isis-module-clisis

50

APPENDIX B

GOMS models

B.1 Scenario 1 GUI

Goal: Create a new contact
.Goal: Invoke ’Create’ action
..Think in which menu the action resides
..Search for ’Contacts’ menu
..Point to ’Contacts’ menu
..Search for ’Create’ action
..Point to ’Create’ action
..Click ’Create’ action
.Goal: Fill out ’Create’ parameters
..Look at ’Name’ field
..Think of name
..Hands to keyboard
..Type Sander Ginn
..Look at ’Company’ field
..Keystroke tab to next field
..Think of company
..Type Eurocommercial
..Look at ’Office number’ field
..Look at ’Mobile number’ field
..Keystroke tab to next field
..Keystroke tab to next field
..Think of mobile number
..Type +31 6252 5983
..Look at ’Home number’ field
..Look at ’Email’ field
..Keystroke tab to next field
..Keystroke tab to next field
..Think of email
..Type sander@ginn.it
..Verify that input is correct
..Hands to mouse
..Look at ’OK’ button
..Point to ’OK’ button
..Click ’OK’ button

B.2 Scenario 2 GUI

Goal: Add contact to contact group
.Goal: Go to contact ’Clarisse Bentz’
..Goal: Invoke ’Find’ action
...Think in which menu the action resides
...Search for ’Contacts’ menu

51

...Point to ’Contacts’ menu

...Search for ’Find’ action

...Point to ’Find’ action.1s

...Click ’Find’ action

..Goal: Fill out ’Find’ parameters

...Hands to keyboard

...Look at ’Query’ field

...Think of name

...Type Clarisse Bentz

...Verify that input is correct

...Hands to mouse

...Look at ’OK’ button

...Point to ’OK’ button

...Click ’OK’ button

.Goal: Add to contact group ’Management Board’ with new role ’Secretary’

..Goal: Invoke ’Add’ action

...Think of which action

...Search for ’Add’ action

...Point to ’Add’ action

...Click ’Add’ action

..Goal: Fill out ’Add’ parameters

...Look at ’Contact Group’ field

...Point to ’Contact Group’ dropdown

...Click ’Contact Group’ dropdown

...Think of which contact group

...Search for ’Management Board’

...Point to ’Management Board’

...Click ’Management Board’

...Look at ’Role’ field

...Look at ’New Role’ field

...Point to ’New Role’ field

...Click ’New Role’ field

...Think of what role

...Type Secretary

...Verify that input is correct

...Hands to mouse

...Look at ’OK’ button

...Point to ’OK’ button

...Click ’OK’ button

B.3 Scenario 3 GUI

Goal: Remove contact number from contact
.Goal: Find contact with email ending in ’@gmail.com’
..Goal: Invoke ’Find by email’ action
...Think in which menu the action resides
...Search for ’Contacts’ menu
...Point to ’Contacts’ menu
...Search for ’Find by email’ action
...Point to ’Find by email’ actions
...Click ’Find by email’ action
..Goal: Fill out ’Find by email’ parameters
...Hands to keyboard
...Look at ’Query’ field
...Think of email

52

...Type @gmail.com

...Verify that input is correct

...Hands to mouse

...Look at ’OK’ button

...Point to ’OK’ button

...Click ’OK’ button

.Goal: Go to contact number ’Mobile’

..Think of which contact number

..Search for ’Mobile’ contact number

..Point to ’Mobile’ contact number

..Click ’Mobile’ contact number

.Goal: Remove contact number

..Think of what action

..Search for ’Delete’ button

..Point to ’Delete’ button

..Click ’Delete’ button1s

B.4 Scenario 4 GUI

Goal: Create new contact group and add user
.Goal: Create new contact group ’Amsterdam’ in country ’Global’
..Goal: Invoke ’Create’ action
...Think of what action
...Search for ’Create’ button
...Point to ’Create’ button
...Click ’Create’ button
..Goal: Fill out ’Create’ parameter
...Look at ’Country’ field
...Point to ’Country’ dropdown
...Click ’Country’ dropdown
...Think of which country
...Search for ’Global’
...Point to ’Global’
...Click ’Global’
...Look at ’Name’ field
...Think of what name
...Point to ’Name’ field
...Click ’Name’ field
...Hands to keyboard
...Type Amsterdams
...Verify that input is correct
...Hands to mouse
...Look at ’OK’ button
...Point to ’OK’ button
...Click ’OK’ button
.Goal: Go to contact group ’Amsterdam’
..Think of what contact group
..Search for ’Amsterdam’ contact group
..Point to ’Amsterdam’ contact group
..Click ’Amsterdam’ contact group
.Goal: Add user ’Anne van Hope’ with role ’Technical Manager’
..Goal: Invoke ’Add’ action
...Think of what action
...Search for ’Add’ button
...Point to ’Add’ button

53

...Click ’Add’ button

..Goal: Fill out ’Add’ parameters

...Look at ’Contact’ field

...Point to ’Contact’ dropdown

...Click ’Contact’ dropdown

...Think of what contact

...Search for ’Anne van Hope’

...Point to ’Anne van Hope’

...Click ’Anne van Hope’

...Look at ’Role’ field

...Point to ’Role’ dropdown

...Click ’Role’ dropdown

...Think of what role

...Search for ’Technical Manager’

...Point to ’Technical Manager’

...Click ’Technical Manager’

...Look at ’New Role’

...Verify that input is correct

...Look at ’OK’ button

...Point to ’OK’ button

...Click ’OK’ button

B.5 Scenario 5 GUI

Goal: Change contact role of contact
.Goal: Go to contact ’Damien Grandjean’
..Goal: Invoke ’Find’ action
...Think in which menu the action resides
...Search for ’Contacts’ menu
...Point to ’Contacts’ menu
...Search for ’Find’ action
...Point to ’Find’ action
...Click ’Find’ action
..Goal: Fill out ’Find’ parameters
...Hands to keyboard
...Look at ’Query’ field
...Think of name
...Type Damien Grandjean
...Verify that input is correct
...Hands to mouse
...Look at ’OK’ button
...Point to ’OK’ button
...Click ’OK’ button
.Goal: Go to contact role in ’Amiens Property’
..Think of which contact role
..Search for contact role in ’Amiens Property’
..Point to contact role in ’Amiens Property’
..Click contact role in ’Amiens Property’
.Goal: Change role type to ’Janitor’
..Goal: Invoke ’Edit’ action
...Think of what action
...Search for ’Edit’ button
...Point to ’Edit’ button
...Click ’Edit’ button
..Goal: Fill out ’Edit’ parameters

54

...Look at ’Role’ field

...Point to ’Role’ dropdown

...Click ’Role’ dropdown

...Think of what role

...Search for empty role

...Point to empty role

...Click empty role

...Look at ’New Role’ field

...Point to ’New Role’ field

...Click ’New Role’ field

...Hands to keyboard

...Type Janitor

...Verify that input is correct

...Look at ’OK’ button

...Point to ’OK’ button

...Click ’OK’ button

B.6 Scenario 1 CLIsis

Goal: Create a new contact
.Goal: Invoke ’Create’ action
..Think of ’List menus’ command
..Type menus
..Keystroke enter
..Hear input: menus, output: menus: zero: contacts, one: contact groups, two: contactable
view model repository, three: home page service
..Think of which menu
..Type menu 0
..Keystroke enter
..Hear input: menu zero, output: contacts menu
..Think of ’List actions’ command
..Type actions
..Keystroke enter
..Hear input: actions, output: actions: zero: listall, one: find, two: find by group,
three: find by role, four: find by email, five: create
..Think of which action
..Type action 5
..Keystroke enter
..Hear input: action five, output: parameters: parameter zero: name field, parameter
one: company field, parameter two: office number field, parameter three: mobile number
field, parameter four: home number field, parameter five: email field
.Goal: Fill out ’Create’ parameters and submit
..Think of which name
..Type field 0 sander ginn
..Keystroke enter
..Hear input: field zero sander ginn
..Think of which company
..Type field 1 eurocommercial
..Keystroke enter
..Hear input: field one eurocommercial (9 syllables)
..Think of which mobile number
..Type field 3 +31 6252 5983
..Keystroke enter
..Hear input: field three plus three one six two five two five nine eight three
..Think of which email

55

..Type field 5 sander@ginn.it

..Keystroke enter

..Hear input: field five sander at ginn dot i t

..Think of submit command

..Type submit

..Keystroke enter

..Hear input: submit, output: contact: sander ginn

B.7 Scenario 2 CLIsis

Goal: Add contact to contact group
.Goal: Go to contact ’Clarisse Bentz’
..Goal: Invoke ’Find’ action
...Think of ’List menus’ command
...Type menus
...Keystroke enter
...Hear input: menus, output: menus: zero: contacts, one: contact groups, two: contactable
view model repository, three: home page service
...Think of which menu
...Type menu 0
...Keystroke enter
...Hear input: menu zero, output: contacts menu
...Think of ’List actions’ command
...Type actions
...Keystroke enter
...Hear input: actions, output: actions: zero: listall, one: find, two: find by group,
three: find by role, four: find by email, five: create
...Think of which action
...Type action 1
...Keystroke enter
...Hear input: action one output: parameters: parameter zero: query field
..Goal: Fill out ’Find’ parameters
...Think of which name
...Type field 0 clarisse bentz
...Keystroke enter
...Hear input: field zero clarisse bentz
...Think of submit command
...Type submit
...Keystroke enter
...Hear input: submit, output: contact: clarisse bentz
.Goal: Add to contact group ’Management Board’ with new role ’Secretary’
...Think of ’List actions’ command
...Type actions
...Keystroke enter
...Hear input: actions, output: zero: create, one: delete, two: edit, three: add
contact number, four: remove contact number, five: add contact role, six: remove
contact role
...Think of which action
...Type action 5
...Keystroke enter
...Hear input: action five, output: parameters: parameter zero: contact group field:
choices: zero: amiens property france, one: amsterdam global, two: management board
global, three: regulatory global, parameter one: role field: choices: zero: centre
manager, one: mayor, two: rus, three: security post, four: stock exchange, five:
technical manager, parameter two: new role field

56

...Think of which contact group

...Type field 0 2

...Keystroke enter

...Hear input: field zero two

...Think of which role

...Type field 2 secretary

...Keystroke enter

...Hear input: field two secretary

...Think of submit command

...Type submit

...Keystroke enter

...Hear input: submit, output: contact: clarisse bentz

B.8 Scenario 3 CLIsis

Goal: Remove contact number from contact
.Goal: Find contact with email ending in ’@gmail.com’
..Goal: Invoke ’Find by email’ action
...Think of ’List menus’ command
...Type menus
...Keystroke enter
...Hear input: menus, output: menus: zero: contacts, one: contact groups, two: contactable
view model repository, three: home page service
...Think of which menu
...Type menu 0
...Keystroke enter
...Hear input: menu zero, output: contacts menu
...Think of ’List actions’ command
...Type actions
...Keystroke enter
...Hear input: actions, output: actions: zero: listall, one: find, two: find by group,
three: find by role, four: find by email, five: create
...Think of which action
...Type action 4
...Keystroke enter
...Hear input: action four, output: parameters: parameter 0: query field
..Goal: Fill out ’Find by email’ parameters
...Think of which email
...Type field 0 @gmail.com
...Keystroke enter
...Hear input: field zero at gmail dot com
...Think of submit command
...Type submit
...Keystroke enter
...Hear input: submit, output: contact: benoit foure
.Goal: Get contact number
..Goal: Get ’Contact Numbers’ collection
...Think of ’List collections’ command
...Type collections
...Keystroke enter
...Hear input: collections, output: collections: zero: contact numbers, items: one,
one: contact roles, items: one
...Think of which collection
...Type get 0
...Keystroke enter

57

...Hear input: get zero, output: collection of one items

...Think of show command

...Type show

...Keystroke enter

...Hear input: show, output: showing page one of one, total one items, zero: plus
three three three two two nine nine one one seven seven, office
..Goal: Get contact number ’Mobile’
...Think of which number
...Type get 0
...Keystroke enter
...Hear input: get zero, ouput: contact number, plus three three three two two nine
nine one one seven seven, office
.Goal: Delete contact number
..Think of ’List actions’ command
..Type actions
..Keystroke enter
..Hear input: actions, output: actions, zero: create, one: edit, two: delete
..Think of which action
..Type action 2
..Keystroke enter
..Hear input: action two

B.9 Scenario 4 CLIsis

Goal: Create new contact group and add user
.Goal: Create new contact group ’Amsterdam’ in country ’Global’
..Goal: Invoke ’Create’ action
...Think of ’List menus’ command
...Type menus
...Keystroke enter
...Hear input: menus, output: menus: zero: contacts, one: contact groups, two: contactable
view model repository, three: home page service
...Think of which menu
...Type menu 1
...Keystroke enter
...Hear input: menu one output: contact groups menu
...Think of ’List actions’ command
...Type actions
...Keystroke enter
...Hear input: actions, output: actions: zero: create
...Think of which action
...Type action 0
...Keystroke enter
...Hear input: action zero, output: parameters: parameter zero: country field, choices:
zero: global, one: france, parameter 1: name field
..Goal: Fill out ’Create’ parameter
...Think of what country
...Type field 0 0
...Keystroke enter
...Hear input: field zero zero
...Think of what name
...Type field 1 amsterdam
...Keystroke enter
...Hear input: field one amsterdam
...Think of submit command

58

...Type submit

...Keystroke enter

...Hear input: submit, output: contactgroup: amsterdam, global

.Goal: Add user ’Anne van Hope’ with role ’Technical Manager’

..Goal: Invoke ’Add’ action

...Think of ’List actions’ command

...Type actions

...Keystroke enter

...Hear input: actions, output: actions: zero: create, one: delete, two: edit, three:
add contact number, four: remove contact number, five: add contact role, six: remove
contact role, seven: fix display order
...Think of which action
...Type action 5
...Keystroke enter
...Hear input: action five, output: parameters: parameter zero: contact field: choices:
zero: anne van hope, one: benoit foure, two: bill smith, three: bob mills, four:
brigitte hollande, five: clarisse bentz, six: damien grandjean, seven: david goodhew,
eight: guillaume maxine, nine: leo gardener, ten: mike jones, eleven: security post,
twelve: zahra martinelli, parameter one: role field: choices: zero: centre manager,
one: mayor, two: rus, three: security post, four: stock exchange, five: technical
manager, parameter two: new role field
..Goal: Fill out ’Add’ parameters
...Think of what contact
...Type field 0 0
...Keystroke enter
...Hear input: field zero zero
...Think of what role
...Type field 1 5
...Keystroke enter
...Hear input: field one five
...Think of submit command
...Type submit
...Keystroke enter
...Hear input: submit, output: contact group: amiens property, france

B.10 Scenario 5 CLIsis

Goal: Change contact role of contact
.Goal: Go to contact ’Damien Grandjean’
..Goal: Invoke ’Find’ action
...Think of ’List menus’ command
...Type menus
...Keystroke enter
...Hear input: menus, output: menus: zero: contacts, one: contact groups, two: contactable
view model repository, three: home page service
...Think of which menu
...Type menu 0
...Keystroke enter
...Hear input: menu zero, output: contacts menu
...Think of ’List actions’ command
...Type actions
...Keystroke enter
...Hear input: actions, output: actions: zero: listall, one: find, two: find by group,
three: find by role, four: find by email, five: create
...Think of which action

59

...Type action 1

...Keystroke enter

...Hear input: action one output: parameters: parameter zero: query field

..Goal: Fill out ’Find’ parameters

...Think of which name

...Type field 0 damien grandjean

...Keystroke enter

...Hear input: field zero damien grandjean

...Think of submit command

...Type submit

...Keystroke enter

...Hear input: submit, output: contact: damien grandjean

.Goal: Go to contact role in ’Amiens Property’

..Think of ’List collections’ command

..Type collections

..Keystroke enter

..Hear input: collections, output: collections: zero: contact numbers, items: one,
one: contact roles, items: one
..Think of which collection
..Type get 1
..Keystroke enter
..Hear input: get one, output: collection of one items
..Think of show command
..Type show
..Keystroke enter
..Hear input: show, output: showing page one of one, total one items, zero: damien
grandjean: centre manager in amiens property
..Think of which number
..Type get 0
..Keystroke enter
..Hear input: get zero, ouput: contact role: damien grandjean: centre manager in
amiens property
.Goal: Change role type to ’Janitor’
..Goal: Invoke ’Edit’ action
...Think of ’List actions’ command
...Type actions
...Keystroke enter
...Hear input: actions, output: actions: zero: also in group, one: also with contact,
two: delete, three: edit
...Think of what action
...Type action 3
...Keystroke enter
...Hear input: action three, output: parameters: parameter zero: role field: choices:
zero: centre manager, one: mayor, two: rus, three: security post, four: stock exchange,
five: technical manager, parameter one: new role field
..Goal: Fill out ’Edit’ parameters
...Think of what role
...Type field 1 janitor
...Keystroke enter
...Hear input: field one janitor
...Think of submit command
...Type submit
...Keystroke enter
...Hear input: submit, output: contactrole: damien grandjean: janitor in amiens property

60

	Introduction
	Theoretical background
	Methods
	Implementation
	Evaluation
	Conclusion
	Application manual
	GOMS models

